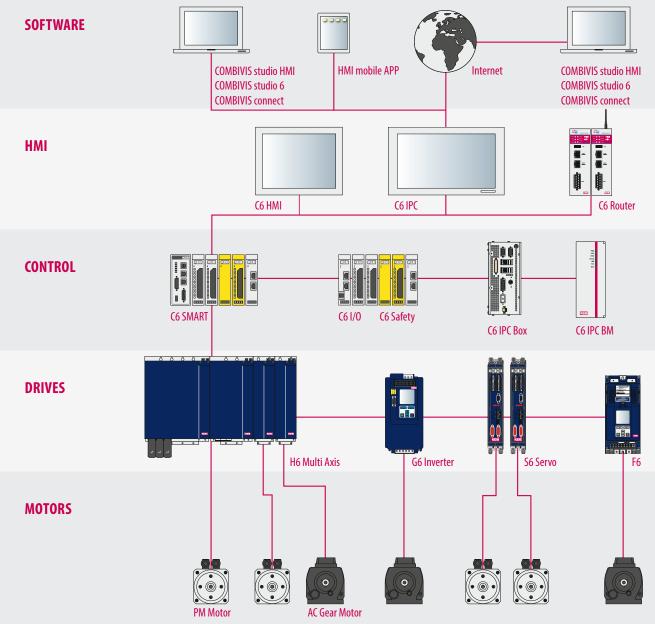


## COMBIVERT H6

MULTI AXIS DRIVE SYSTEM **EN** 

# KEB

Inninninni


| CONTENT                    | PAGE |
|----------------------------|------|
| System overview            | 3    |
| Benefits                   | 4    |
| COMBIVERT H6 System        | 6    |
| Functional Safety          | 8    |
| H6 Axis Units              | 10   |
| H6 control unit and 24 VDC | 12   |
| H6 supply units            | 13   |
| H6 AFE                     | 14   |
| Accessories                | 16   |
| Servo gear motors          | 18   |
| Servo motors - TA          | 19   |
| COMBIVIS 6                 | 20   |
| KEB service                | 22   |
| KEB worldwide              | 23   |
|                            |      |

## **SYSTEM OVERVIEW**



#### Automation with Drive

stands as a synonym for optimally selected combinations of control and automation solution. With the drive level at the end it is the key to successful machine concepts. Let the following pages inspire you with regards to the diversity and performance of the multi-axis drive system COMBIVERT H6 and help you to find a solution that reliably meets your requirements.



### COMBIVERT H6 BENEFITS

From more than 30 years of experience with electronic drive technology, sophisticated control algorithms for all common motor versions have been developed. Based on our extensive experience on single inverter and servo drives, we are now pleased to offer the COMBIVERT H6, the complete drive solution for machine automation.

COMBIVERT H6 has integrated all the experiences in one device with control and communication technology, perfect adaptable to machine builder requirements.

#### THE MODULAR DRIVE TECHNOLOGY: COMBIVERT H6

COMBIVERT H6 is the product family for multi-axis solutions



## 3

- Space-saving design of a multi-axis drive system
- Load share via protected DC bus link
- Significantly reduced wiring and installation
- Integrated Soft-PLC-, Motion- and NC- control
- Integrated 24 V DC supply
- Standardized connection technology simplifies handling
- Integrated two-level safety systems

- Innovative central cooling solutions for heat dissipation outside the control cabinet
- Improved quality and lifetime by means of active DC-bus capacitor cooling
- Central operation concept for the complete system
- Standarized programming tools with diagnostics



#### **DRIVE BASED SAFETY**

- Integrated Safety functionality
- STO and SBC as standard
- Speed dependent safety functions as an option

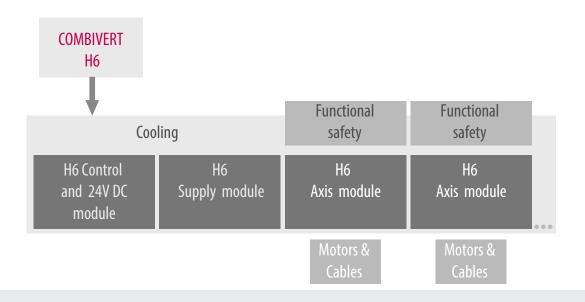
#### **REAL-TIME COMMUNICATION**

- EtherCAT as real-time Ethernet-based interfaces
- Other Ethernet based interfaces in the control unit
- RS232/485 for diagnostics or display

#### **ALL IN ONE - UNIVERSAL MOTOR OPERATIONS**

- Control for synchronous or asynchronous V/f made for asynchronous motors
- Motor operation with encoder feedback or encoderless ASCL/SCL for precise speed control
- Motor temperature monitoring with PTC, KTY or PT1000 sensors
- Two-channel multi-encoder interface
- Integrated GTR7 brake transistor in the supply unit
- Integrated brake control and brake supply




- Uncompromising integration, highest perfomance
- Modern realtime communication standards
- Integrated functional safety
- Particular compact size
- Modular design, flexible cooling systems
- Reduces number of system components

## COMBIVERT H6 SYSTEM

#### **MODULAR AND FLEXIBLE**

The COMBIVERT H6 Multi-axis system is a DC intermediate circuit coupled drive controller system for the operation of synchronous and asynchronous machines.

The wide performance range covered by the system and the multiple combination options enable flexible use of the H6 System in a broad spectrum of different applications up to 315A. The H6 system bus is EtherCAT.



The second

- Space-saving fitting of a DC intermediate circuit coupled drive system
- Very high output density
- Reduced wiring costs and time-saving assembly due to system design concept (e.g. with DC power and 24V DC rail system).
- Coverage of a wide current range (axis module In = 2.6A to 210A and up to 2.2 times overload)
- Problem-free coupling with other KEB Drives (e.g. Type F6)
- Energy-saving due to storage and regeneration capability (AFE)
- Enables optimum utilization of the motor by boost converter function (AFE)
- Regulation of synchronous and asynchronous machines, regulated with or without encoder (SCL and ASCL)

KEB





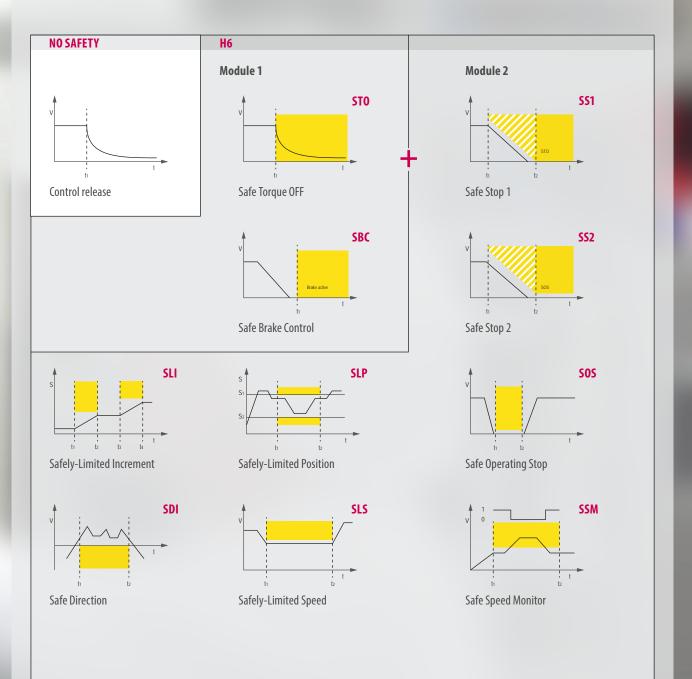
- Reduces number of system components
- 4 models: 50 mm, 100 mm, 200 mm and 300 mm
- Range of cooling options
- Flexible automation system
- Integrated Motion Controller
- COMBIVIS 6 operating software for commissioning and diagnostics for drives, controls and safety
- Certified integrated safety functions to PLe: STO, SBC, SLS, SDI, SLP, etc.
- UL / UR acceptance



| 5517.00/16<br>derivatives 000 auf der<br>instrument<br>Mit Index 100 auf der<br>instrument<br>Mit Index 100 auf der<br>instrument<br>Mit Index 100 auf der<br>100 auf 200 auf der<br>100 auf 200 auf der<br>100 auf 200 auf der<br>100 auf 200 auf 200 auf 200 auf<br>100 auf 200 auf 200 auf 200 auf 200 auf<br>100 auf 200 auf 200 auf 200 auf 200 auf<br>100 auf 200 auf 200 auf 200 auf 200 auf 200 auf<br>100 auf 200 auf 20                                                                                                                                                                                                          | EN 500 13<br>EN 500 13<br>EN 60204<br>edhachij<br>HE 61508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nof950+000<br>049-1-2015<br>12006 + A12009 + AC2010 (H<br>Parts 1-72010<br>Antoniouscan der Picturustage                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| warkuto tesi COMBNET FAH.<br>Kitotes<br>My Auchol STD on centre Lawed<br>Inter Auchol STD on centre Lawed<br>Inter Auchol Std on Centre Lawed<br>State Control Lawed Std Std Centre<br>(Second-S-2 2007)<br>(Second-S-2 2                              | khaber<br>Certificate<br>holder<br>115, 3676-00-001<br>e uad in invester<br>EN 150-15<br>H 100-00-<br>eduction<br>IEC 51-005<br>C | Nat E. Bristman Gotti<br>Finateway 8-38<br>2003 Baning<br>Genery<br>1<br>art 60ce east<br>846 12015<br>12004 - Ar 22014 - AC 2010 (e<br>Parts 1-72016<br>Antrodeurugen der Picitiquetigen |
| Verwendung In den Detschlein / Ib 3<br>e 1980 5-52 3007<br>e 1980 5-2 3007<br>e | EN 500 13<br>EN 500 13<br>EN 60204<br>edhachij<br>HE 61508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nof950+000<br>049-1-2015<br>12006 + A12009 + AC2010 (H<br>Parts 1-72010<br>Antoniouscan der Picturustage                                                                                  |
| 45300-5-1 2007<br>42001-2005 - AC2010 - A12013 -<br>2015<br>a Scherheitstunksen "Sale Torque O<br>at 4 /PL einach EN SIG 13846-1 Sal<br>500 and kam in Arwendungen Brz<br>saldrig Sundin "Sale Torque Off S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EN 60204-<br>extraction<br>HEC 61508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12006 + A12009 + AC2010 (H<br>Parts 1-72010<br>Antordarungen der Priftprundlagen                                                                                                          |
| at. 4 / PL a nach EN ISO 13949-1, 50<br>500 und kann in Anwendungen bis z<br>a safety function "Safe Torizo Off" (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13/BIL CL 3 red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Antorderungen der Prütgrundlagen                                                                                                                                                          |
| evolution (Call, 4 / PL + acc. to EN 100<br>(611 / IEC 61506) and can be used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10) complies with<br>\$3549-1, 58, 3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tdevels virgenetit worder.<br>If a requirements of the relevant<br>A. Cl. 3 acr. to EN 61800-5-2 / EN                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                           |
| the second secon                                                                                                                                                                                                                                              | tand übereinstm<br>ungszweck,<br>Is are documente<br>souch tested. It be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nen. Es wird ungültig bei<br>ed in                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dex -ing. Eberhard Freino                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a stratuctory of the investigated trials<br>and rail data Antonianunger starth Anto-<br>complexe with the requirements for in<br>expression Prilling zugrunde, derwin<br>sub care antogeneous to know<br>the start antogeneous to know the start antogeneous to know<br>the start antogeneous to know the start antogeneous to know the start<br>antogeneous to know the start antogeneous to know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the which any Cardinal with the product rested, if the<br>basis of the Cardinater that manifest application.                                                                              |



- possible download of encrypted data packets through machine controllers modular safety concept
- dual channel ripple interface for cascading functional safety over multiple KEB drives
- dual OSSD outputs for supply of the safe digital inputs (detection of wire break, shortcut and external supply)
- safe parameterization through COMBIVIS 6 with protected operation levels


## **FUNCTIONAL SAFETY**

#### SAFETY FUNCTIONS ACCORDING TO IEC 61508 - SIL3, ISO 13849 - PL e

With the drive-based-safety, safety functions are shifted into the drive platform and the costs of separate protective devices are reduced. The drive controllers COMBIVERT H6 are prepared for the different requirements in their modular structure.

The H6 can be equipped with different safety modules. Depending on the requirement, basic functions with the Module 1 and a wide range of functions are available with the Module 2, which are addressed via safe inputs and outputs and safe FSoE communication.

The full Safety System results in the interaction of the drive controllers with the C6 Safety PLC and the C6 Safety I / 0's.



## H6 AXIS UNITS

| AXIS MODULES                                          | size  | 07   | 10   | 12   | 13   | 14   | 15   | 16     |
|-------------------------------------------------------|-------|------|------|------|------|------|------|--------|
| Version                                               |       |      |      | 1    | 1    |      | 1    | Single |
| Rated apparent output power S <sub>n</sub>            | [kVA] | 1.8  | 4    | 6.2  | 8.3  | 11   | 17   | 23     |
| Rated active power P <sub>n</sub>                     | [kW]  | 0.75 | 2.2  | 4    | 5.5  | 7.5  | 11   | 15     |
| Rated input voltage U <sub>n</sub>                    | [V]   |      |      |      |      |      |      |        |
| Rated input current I <sub>n</sub>                    | [A]   | 2.6  | 5.8  | 9    | 12   | 16.5 | 24   | 33     |
| Maximum current I <sub>max</sub>                      | [A]   | 5.2  | 11.6 | 18   | 24   | 33   | 43.2 | 59     |
| OC-tripping current I <sub>oc</sub>                   | [A]   | 6.2  | 13.9 | 21.6 | 28.8 | 39.6 | 51.8 | 71     |
| Switching frequency fs <sub>nenn/max</sub>            | [kHz] |      |      |      |      |      |      |        |
| OH level temperature                                  | [°C]  | 80   | 80   | 80   | 80   | 80   | 80   | 80     |
| Power loss at nom. operation at heat sink $P_{Dext}$  | [W]   | 18   | 37   | 58   | 77   | 99   | 150  | 209    |
| Power loss at nom. operation inside P <sub>Dint</sub> | [W]   | 18   | 22   | 26   | 31   | 39   | 47   | 61     |
| Module width                                          | [mm]  | 50   | 50   | 50   | 100  | 100  | 100  | 100    |
| Air cooled housing                                    |       |      |      |      |      |      |      |        |
| Flat rear housing                                     |       |      |      |      |      |      |      |        |

3L

- Wide power range rated currents from 2.6A to 210A
- Very high power density
- Different types of cooling
- Integrated brake output 24V DC / 3.3A (single-axis module) or 2x 2A (double-axis module)
- Certified integrated safety functions to PL e: STO and SBC as standard
- Speed-dependent safety functions to PLe, also SLS, SDI, SLP, etc. as optional
- EtherCAT system bus
- Control by means of drive profile according to CiA402
- Regulation of synchronous and asynchronous machines, with and without encoder feedback
- Ideally suited for KEB brand motors as well as non-KEB motors
- 2-channel multi-encoder interface for evaluation of incremental encoder, resolver, Sin/Cos, EnDat, Hiperface, BiSS, SSi, etc.
- Real field-orientated regulation without encoder feedback for synchronous and asynchronous machines (SCL / ASCL), as well as V/f operation
- Further increase in proven KEB shaft performance
- Optimization of motor operation properties with functions such as anti-cogging, torque pre-control of linear and non-linear kinematics, etc.
- UL / UR acceptance

KEB

| 18             | 19     | 20  | 21  | 22  | 23    | 24    | 25    | 07       | 10            | 12       |
|----------------|--------|-----|-----|-----|-------|-------|-------|----------|---------------|----------|
| axis Module_   | H6A    |     | 1   |     |       |       |       | Double   | e-axis Module | H6B      |
| 33             | 42     | 52  | 62  | 76  | 100   | 125   | 145   | 2 x 1.8  | 2 x 4         | 2 x 6.2  |
| 22             | 30     | 37  | 45  | 55  | 75    | 90    | 110   | 2 x 0.75 | 2 x 2.2       | 2 x 4    |
|                |        | 400 |     |     |       |       |       |          |               |          |
| 48             | 60     | 75  | 90  | 110 | 145   | 180   | 210   | 2 x 2.6  | 2 x 5.8       | 2 x 9    |
| 86             | 90     | 135 | 162 | 198 | 218   | 270   | 315   | 2 x 5.2  | 2 x 11.6      | 2 x 18   |
| 103            | 108    | 162 | 194 | 238 | 261   | 324   | 378   | 2 x 6.2  | 2 x 13.9      | 2 x 21.6 |
| l/8 (with dera | ating) |     |     |     |       |       |       |          | 4             |          |
| 80             | 80     | 80  | 80  | 80  | 80    | 80    | 80    | 80       | 80            | 80       |
| 316            | 382    | 522 | 641 | 802 | 1,117 | 1,341 | 1,656 | 36       | 74            | 116      |
| 72             | 79     | 85  | 89  | 119 | 165   | 149   | 165   | 26       | 34            | 42       |
| 100            | 100    | 200 | 200 | 200 | 200   | 300   | 300   | 50       | 50            | 50       |
|                |        |     |     |     | -     |       | -     |          |               |          |
|                |        |     |     |     |       |       |       |          |               |          |
|                | I      | I   | I   | 1   | 1     | 1     | 1     | 1        | 1             | 1        |

#### MECHANICAL DATA, OPERATING TYPES, STANDARDS

#### **OPERATING MODES**

| Motor control mode  | <b>PMSM</b> : field-oriented with encoder, S.C.L. encoderless.       |  |  |  |  |
|---------------------|----------------------------------------------------------------------|--|--|--|--|
|                     | <b>ASM</b> : V/F, field-oriented with encoder, A.S.C.L. encoderless. |  |  |  |  |
| Application profile | CiA 402                                                              |  |  |  |  |
| Control mode        | Asynchronous speed specification (Velocity Mode)                     |  |  |  |  |
|                     | Cycl. Synchronous speed specification (Cycl. Sync. Velocity Mode)    |  |  |  |  |
|                     | Cycl. Synchronous position specification (Cycl. Sync. Position Mode) |  |  |  |  |
|                     | Single-axis positioning module (Profile Positioning Mode)            |  |  |  |  |
|                     | Homing Mode                                                          |  |  |  |  |
|                     | Torque pilot control crank drives                                    |  |  |  |  |
| GENERAL             |                                                                      |  |  |  |  |
| Product standard    | EN 61800-2, -5-1                                                     |  |  |  |  |
| Protection class    | IP 20 / VBG 4                                                        |  |  |  |  |
|                     |                                                                      |  |  |  |  |

| Protection class | IP 20 / VBG 4                                                                |
|------------------|------------------------------------------------------------------------------|
| Environment      | EN 60721-3-3                                                                 |
|                  | Operating temperature -10 45 °C (up to 55°C, 5% derating per 1K)             |
|                  | Storage temperature -25 70 °C                                                |
|                  | Humidity 3K3 - 5 85% (no condensation)                                       |
| Site altitude    | Rated to 1000 m (1% derate per 100m above 1000m) max. 2000m above sea level. |

## **H6** CONTROL UNIT AND 24 VDC

#### **CONTROL SUPPLY UNIT**

The 50 mm CONTROL SUPPLY UNIT is the highly efficient solution for PLC, Motion Control and integrated 24 V DC supply - containing the 24 V supply module and the Embedded Control, guarantees a further size reduction of the control cabinet.

| CONTROL SUPPLY UNIT            |                    | Control unit / 24 V DC-supply unit with EtherCAT Master 0_H6GDB/P $\_$ _ |
|--------------------------------|--------------------|--------------------------------------------------------------------------|
| Floating Point Unit            |                    |                                                                          |
| Internal Memory                |                    | 256 MB                                                                   |
| Systembus EtherCAT, 2 x RJ45   | [MB]               | 10/100                                                                   |
| Diagnostic interface , D-Sub 9 |                    | RS 232/485                                                               |
| Power supply Un                | [V <sub>DC</sub> ] | 24                                                                       |
| Digital IN                     |                    | 4                                                                        |
| Digital OUT                    |                    | 4                                                                        |
| Field Bus slave optional       |                    | Profibus, Interbus, CAN, ProfiNet, Powerlink, EtherCAT                   |
| Module size W x H x D          | [mm]               | 50 x 407 x 198 / 295*                                                    |
| Air cooled housing*            |                    | •                                                                        |
| Flat rear housing              |                    |                                                                          |

| SUPPLY UNIT                                |                    | 24 V DC-supply unit 01.H6.GBB/P |
|--------------------------------------------|--------------------|---------------------------------|
| Rated apparent output power S <sub>n</sub> | [VA]               | 600                             |
| Rated active power P <sub>n</sub>          | [W]                | 500                             |
| Nominal input voltage                      | [V <sub>AC</sub> ] | 320 480                         |
| Rated output current I <sub>n</sub>        | [A <sub>DC</sub> ] | 25 (UL : 20A)                   |
| Maximum current I <sub>max</sub>           | [A <sub>DC</sub> ] | 40                              |
| Power loss at nom. operation $P_L$         | [W]                | 65                              |
| Module size W x H x D                      | [mm]               | 50 x 407 x 198 / 295*           |
| Air cooled housing *                       |                    |                                 |
| Flat rear housing                          |                    |                                 |

## H6 SUPPLY UNITS

| POWER SUPPLY                                                | SIZE               | 19  | 20   | 21        | 24          | 25   | 27  | 28   |
|-------------------------------------------------------------|--------------------|-----|------|-----------|-------------|------|-----|------|
| Supply type                                                 |                    |     |      | B6 bridge | rectifier _ | _H6C |     |      |
| Rated apparent output power S <sub>n</sub>                  | [kVA]              | 31  | 39.5 | 51        | 104         | 131  | 170 | 242  |
| Rated active power P <sub>n</sub>                           | [kW]               | 30  | 37   | 48        | 95          | 120  | 155 | 225  |
| Rated input voltage U <sub>n</sub>                          | [V]                |     |      |           | 400         |      |     |      |
| Rated input current I <sub>n</sub>                          | [A <sub>AC</sub> ] | 45  | 57   | 74        | 150         | 190  | 245 | 350  |
| Base load current I <sub>H</sub>                            | [A <sub>AC</sub> ] | 37  | 47   | 61        | 123         | 155  | 201 | 287  |
| Current in S6 mode I <sub>S6_40%/10min.</sub>               | [A <sub>AC</sub> ] | 58  | 74   | 96        | 195         | 246  | 319 | 455  |
| Maximum current I <sub>max</sub>                            | [A <sub>AC</sub> ] | 81  | 103  | 133       | 270         | 341  | 441 | 630  |
| OC-tripping current I <sub>oc</sub>                         | [ADC]              | 97  | 123  | 160       | 324         | 410  | 529 | 756  |
| Rated output current I <sub>DCn</sub>                       | $[A_{DC}]$         | 55  | 70   | 90        | 180         | 230  | 300 | 435  |
| OH level temperature                                        | [°C]               | 80  | 80   | 60        | 80          | 60   | 80  | 60   |
| Power loss at nom. operation at heat sink P <sub>Dext</sub> | [W]                | 175 | 250  | 320       | 375         | 450  | 650 | 950  |
| Power loss at nom. operation inside P <sub>Dint</sub>       | [W]                | 60  | 75   | 85        | 60          | 70   | 85  | 1100 |
| Module width                                                | [mm]               | 100 | 100  | 100       | 300         | 300  | 300 | 300  |
| Air cooled housing                                          |                    |     |      |           |             |      |     | -    |
| Flat rear housing                                           |                    |     |      |           |             |      |     |      |

Technical data for 2/4-pole motors; other number of poles or special motors: adapt supply module for DC-current. Mains choke with  $u_k = 4\%$  assumed.



#### HIGHLIGHTS

- Scalable performance for the H6 multi-axis system supply
- Large output range up to 225 kW rated output
- Input voltage range 305 to 528VAC at 50/60Hz
- Suitable network types: TN, TT, IT
- Wide range of radio interference filters and power chokes available for use
- Different Types of cooling
- Integrated brake transistor (GTR7)
- UL / UR Acceptance

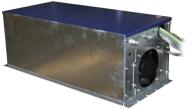
KEB

## H6 ACTIVE FRONT END (AFE)

| AFE-SUPPLY                                              | SIZE                                                  | 14   | 19  | 21    | 24    | 26    |  |  |
|---------------------------------------------------------|-------------------------------------------------------|------|-----|-------|-------|-------|--|--|
| Supply type                                             | AFE-sinusoidal power supply / regeneration systemH6D_ |      |     |       |       |       |  |  |
| Rated apparent output power S <sub>n</sub>              | [kVA]                                                 | 11   | 42  | 62    | 125   | 173   |  |  |
| Rated active power P <sub>n</sub>                       | [kW]                                                  | 7.5  | 30  | 45    | 90    | 132   |  |  |
| Rated input voltage U <sub>n</sub>                      | [V]                                                   |      |     | 400   |       |       |  |  |
| Rated input current I <sub>n</sub>                      | [A <sub>AC</sub> ]                                    | 16,5 | 60  | 90    | 180   | 250   |  |  |
| Maximum current I <sub>max</sub>                        | [A <sub>AC</sub> ]                                    | 33   | 108 | 162   | 270   | 378   |  |  |
| OC-tripping current I <sub>oc</sub>                     | [A <sub>DC</sub> ]                                    | 39   | 173 | 259   | 378   | 518   |  |  |
| Rated switching frequency f <sub>s</sub>                | [kHz]                                                 | 8    | 8   | 8     | 8     | 4     |  |  |
| OH level temperature                                    | [°C]                                                  | 80   | 80  | 80    | 80    | 80    |  |  |
| Power loss at nom. operation at heat sink $P_{_{Dext}}$ | [W]                                                   | 181  | 698 | 1.090 | 2.315 | 1.979 |  |  |
| Power loss at nom. operation inside P <sub>Dint</sub>   | [W]                                                   | 53   | 95  | 131   | 218   | 189   |  |  |
| Module width                                            | mm                                                    | 100  | 200 | 200   | 300   | 300   |  |  |
| Air cooled housing                                      |                                                       |      |     |       | -     | -     |  |  |
| Flat rear housing                                       |                                                       |      |     |       |       |       |  |  |

- Supply and regeneration as AFE Active Front End with compatible charging module and AFE filter
- Sinusoidal energy intake and recover of optimum quality THD(i) < 3.5 %
- Regulated DC intermediate circuit for the same regulation performance even with variable major fluctuations in network conditions
- Adjustable DC-DC intermediate circuit voltage enables optimized drive design (boost converter function)
- Wide output range up to 173kVA rated output
- Different Types of cooling
- Integrated brake transistor (GTR7) in charging module





#### **AFE FILTER**

In applications with high or continious regenerative power, the energy provider requires a low ratio of harmonics (THD value) at the power supply unit.

The AFE-supply / regenerative moduls of the COMBIVERT H6 system have to be used with proper designed AFE-filters for sinusoidal regeneration operation. Depending on the application, these filters are designed for 100 % or 60 % regenerative duty cycle.

| Accessories     | AFE FILTER   | I <sub>N</sub> 100 % | W    | Н    | D    | m    |
|-----------------|--------------|----------------------|------|------|------|------|
| AFE supply unit | part number  | [A]                  | [mm] | [mm] | [mm] | [kg] |
| 14H6Dxx-xxxx    | 14H6J4E-1000 | 16,5                 | 200  | 470  | 214  | 16.0 |
| 19H6Dxx-xxxx    | 19H6J4F-1000 | 60                   | 250  | 570  | 214  | 34.0 |
| 21H6Dxx-xxxx    | 21H6J4F-1001 | 90                   | 250  | 570  | 214  | 42.5 |
| 24H6Dxx-xxxx    | 24H6J4G-1000 | 180                  | 300  | 750  | 271  | 68.0 |
|                 |              |                      |      |      |      |      |
| Accessories     | AFE FILTER   | l <sub>N</sub> 60 %  | W    | Н    | D    | m    |
| AFE supply unit | part number  | [A]                  | [mm] | [mm] | [mm] | [kg] |
| 19H6Dxx-xxxx    | 19H6J4E-1000 | 36                   | 200  | 470  | 214  | 21.5 |
| 21H6Dxx-xxxx    | 21H6J4F-1000 | 54                   | 250  | 570  | 214  | 32.0 |
| 24H6Dxx-xxxx    | 24H6J4F-1000 | 108                  | 250  | 570  | 214  | 41.0 |
| 26H6Dxx-xxxx    | 26H6J4G-1000 | 250                  | 300  | 750  | 271  | 68.0 |





#### **CHARGING UNIT**

The charging unit operates in combination with the AFE supply units for sinusoidal regen operation and contents the GTR7 brake transistor for the peak load transfer to external resistors.

| CHARGING UNIT                                         | part number | 00H6FAB/P-1100        |  |
|-------------------------------------------------------|-------------|-----------------------|--|
| Rated input voltage U <sub>n</sub>                    | [V]         | 400                   |  |
| Power loss at nom. operation inside P <sub>Dint</sub> | [W]         | 5                     |  |
| Module size W x H x D                                 | [mm]        | 50 x 407 x 198 / 295* |  |
| Braking transistor                                    |             |                       |  |
| Max. braking power with c.d.f. ED 40 %                | [kW]        | 33                    |  |
| Max. braking current Imax <sub>oc</sub>               | [ADC]       | 146                   |  |
| Max. braking resistor                                 | [0hm]       | 6                     |  |
| Switching frequency f <sub>s</sub>                    | [kHz]       | 4                     |  |
| Air cooled housing*                                   |             |                       |  |
| Flat rear housing                                     |             |                       |  |

## ACCESSORIES

#### **STABLE OPERATION IN INDUSTRIAL ENVIRONMENT**

An EMC-compliant assembly with efficient control cabinet and suppression system is the basis for safe operation of machinery and equipment. The current and voltage limiting COMBILINE modules are optimally designed to meet the requirements of the COMBIVERT H6 multi axis drive drive controller series and support the use through:



#### **MAINS EMC FILTERS**

Compliance with the international standards for industrial and residential areas requires the use of EMC filters. In the COMBIVERT H6 modular system, they are installed centrally, above of the supply unit. The sizing of the modules according to EN 61800-3 environment C1 and C2 are typically based on 4 drive axes with a total motor cable length of 300 m.

| LINE FILTER  | l <sub>n</sub> | I <sub>lk50</sub> | l<br>Ikmax | P <sub>d</sub> | В    | Н    | Т    | m    |
|--------------|----------------|-------------------|------------|----------------|------|------|------|------|
| Part number  | [A]            | [mA]              | [mA]       | [W]            | [mm] | [mm] | [mm] | [kg] |
| 14E6T60-3000 | 22             | < 3               | 12         | 14             | 55   | 252  | 92   | 1.3  |
| 16E6T60-3000 | 43             | < 3               | 31         | 18             | 65   | 252  | 106  | 1.8  |
| 18E6T60-3000 | 65             | < 3               | 24         | 27             | 130  | 240  | 142  | 3.9  |
| 20E6T60-3000 | 100            | < 3               | 81         | 54             | 160  | 240  | 142  | 5.0  |
| 22E6T60-3000 | 150            | < 3               | 52         | 80             | 200  | 321  | 190  | 9.0  |
| 24E6T60-3000 | 200            | < 3               | 117        | 100            | 200  | 321  | 190  | 9.2  |
| 27E6T60-3000 | 330            | < 3.5             | 123        | 160            | 250  | 516  | 194  | 22.5 |
| 28E4T60-1001 | 410            | < 3               | 220        | 50             | 260  | 340  | 115  | 18.5 |

KEB

#### **MAINS CHOKES**

The COMBIVERT H6 uses a single choke from our standard Z1B04 range on the input. This will give a uk = 4 %. Size selection is related to the average input current and peak load characteristic of the multi axis system.

| MAINS CHOKE   | I <sub>n</sub> | l<br>max | L     | В    | Н    | T    | m    |
|---------------|----------------|----------|-------|------|------|------|------|
| Part number   | [A]            | [A]      | [mH]  | [mm] | [mm] | [mm] | [kg] |
| 14Z1B04-1000  | 17.3           | 29.7     | 1.7   | 148  | 77   | 145  | 2.8  |
| 15Z1B04-1000  | 25.2           | 36       | 1.16  | 178  | 87   | 180  | 4.4  |
| 16Z1B04-1000  | 34.7           | 52.1     | 0.847 | 178  | 100  | 178  | 5.9  |
| 17Z1B04-1000  | 44.1           | 66.2     | 0.667 | 219  | 115  | 215  | 8.4  |
| 18Z1B04-1000  | 52.5           | 78.8     | 0.560 | 219  | 120  | 220  | 10   |
| 19Z1B04-1000  | 63             | 94.5     | 0.467 | 219  | 135  | 220  | 12   |
| 20Z1B04-1000  | 79             | 118.5    | 0.372 | 219  | 150  | 220  | 12   |
| 21.Z1B04-1000 | 95             | 142.5    | 0.310 | 267  | 155  | 207  | 15.6 |
| 24Z1B04-1000  | 189            | 283.5    | 0.156 | 316  | 225  | 235  | 24.8 |
| 25Z1B04-1000  | 221            | 331.5    | 0.133 | 316  | 225  | 235  | 25   |
| 27Z1B04-1000  | 315            | 472.5    | 0.093 | 352  | 230  | 265  | 34   |
| 28Z1B04-1000  | 390            | 585      | 0.075 | 388  | 245  | 295  | 41.5 |



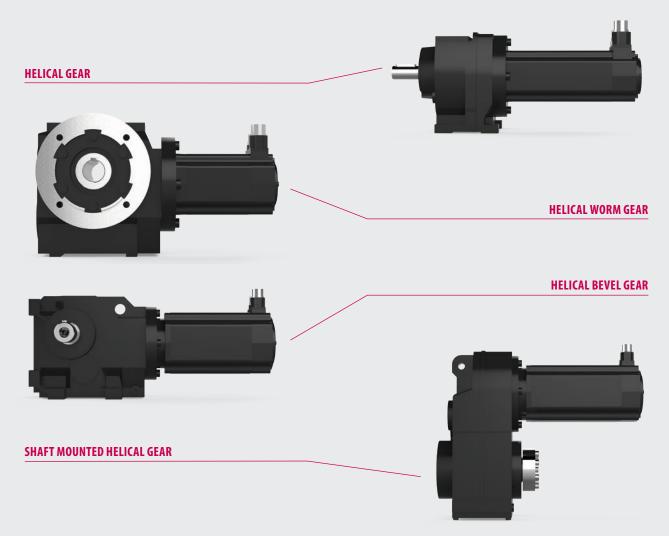
#### **BRAKING RESISTOR**

Braking resistors can be connected to the series terminals of the GTR7 brake transistor, and ensure that energy peaks are absorbed and discharged. The compact design require only small space and they are intrinsically safe; without additional temperature sensors.

To protect against overheating and fire hazards, the brake resistors feature thermal monitoring which can be integrated into the external circuit.

#### **THE FURTHER OPTIONS ARE**

| Output chokes                  | reduce the voltage and current stress of the motor winding.                                                                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sine-wave filters              | protect the motor winding from voltage peaks and allow the use of long motor cables.                                                                                                                                                                   |
| Harmonic filters               | reduce the low frequency mains distortion of B6-rectifier supplied devices. These harmonic filters are the new innovative solution to comply to most international standards. The integration to a switch gear layout is as simple as of mains chokes. |
| Sine-wave EMC filters          | allow operation of motors with long motor cables even without screening.                                                                                                                                                                               |
| High performance ferrite cores | reduces the values of du/dt's also in the frequency range of the bearing currents.                                                                                                                                                                     |


## SERVO GEAR MOTORS

#### **INTEGRAL SERVO DESIGN**

Based on the industrial standard with AC motors the portfolio of COMBIGEAR series offers a full basket of servo gear solutions. The dynamic and efficient TA servo motors are direct connected in the first gear stage - best choice for minimum lenghts, nearly zero wear and small inertia of the gear motor system.

Flexible designs for flange-, foot- or combined flange/foot- mounting and a wide range of options secure individual needs in the machine. Ultra-fine speed ratio range, adjustable down to speed 0, enables optimum adaptation of torque and speed on output. Life-time lubrication, high overload and low torsional backlash ensure a long service life.

| ТҮРЕ | SIZE | DESIGN                     | T <sub>N</sub><br>[Nm] | I           | TA2 | TA3 | TA4 | TA5 |
|------|------|----------------------------|------------------------|-------------|-----|-----|-----|-----|
| G    | 0 7  | Helical gear               | 60 4880                | 3.37 250.97 |     |     |     |     |
| F    | 2 7  | Shaft mounted helical gear | 245 4880               | 3.20 274.23 |     |     |     |     |
| К    | 0 7  | Helical bevel gear         | 58 4880                | 3.38 183.21 |     |     |     |     |
| S    | 0 4  | Helical worm gear          | 55 1160                | 5.09 247.58 |     |     |     |     |



## SERVO MOTORS - TA

#### **TA SERIES**



| MOTOR | T <sub>o</sub> | T <sub>N</sub> | I <sub>D0</sub> | I <sub>N</sub> | N <sub>N</sub> | В     | C      | D      | E      | <b>BRAKE OPTION</b> |
|-------|----------------|----------------|-----------------|----------------|----------------|-------|--------|--------|--------|---------------------|
|       | [Nm]           | [Nm]           | [A]             | [A]            | [rpm]          | □[mm] | Ø [mm] | Ø [mm] | Ø [mm] | T <sub>N</sub> [Nm] |
| TA21  | 0.82           | 0.85           | 0.9             | 0.87           | 4500           | 75    | 75     | 11     | (0)    | 2.0                 |
| TA22  | 1.45           | 1.55           | 1.52            | 1.42           | - 4500         | 75    | 75     | 11     | 60     | 2.0                 |
| TA31  | 1.5            | 1.4            | 1.1             | 1.1            |                |       |        |        |        |                     |
| TA32  | 2.8            | 2.6            | 1.8             | 1.7            | 3000           | 88    | 100    | 14     | 80     | 4.5                 |
| TA33  | 3.9            | 3.6            | 2.5             | 2.4            | _              |       |        |        |        |                     |
| TA41  | 6.9            | 6.3            | 4.0             | 4.1            |                |       |        |        |        |                     |
| TA42  | 9.2            | 8.2            | 5.9             | 5.2            | 3000           | 116   | 115    | 19     | 95     | 9                   |
| TA43  | 11.7           | 10.1           | 7.3             | 6.3            |                |       |        |        |        |                     |
| TA51  | 11.5           | 10.4           | 7.4             | 6.6            |                |       |        |        |        |                     |
| TA52  | 16.1           | 13.5           | 10.3            | 8.7            | 2000           | 145   | 165    | 24     | 130    | 18                  |
| TA53  | 20.0           | 16.1           | 12.8            | 10.3           | -              |       |        |        |        |                     |

## 3

#### HIGHLIGHTS

- 0.82 ... 20 Nm in four frame sizes
- Low inertia high impulse torque
- Easy plug connection, straight or angled (360° rotatable)
- Compact size directly integrated in the gear modules
- High total efficiency, lifetime lubricated, universal installation positions and robust mechanics
- Resolver or absolute rotary encoder, BiSS single and multi-turn
- Optionally with COMBIPERM holding brake

KEB

## **COMBIVIS 6** - THE TOOL FOR ALL TASKS

#### **COMBIVIS 6**

- Free and easy-to-use software for startup, administration and analysis
- Integrated start-up assistants (Wizards) for quick and easy configuration
- Direct access to device documentation
- 16 channel oscilloscope for extensive analysis
- Online parameter list comparison
- Parameterisation of key safety indicators and functions



#### **COMBIVIS studio 6**

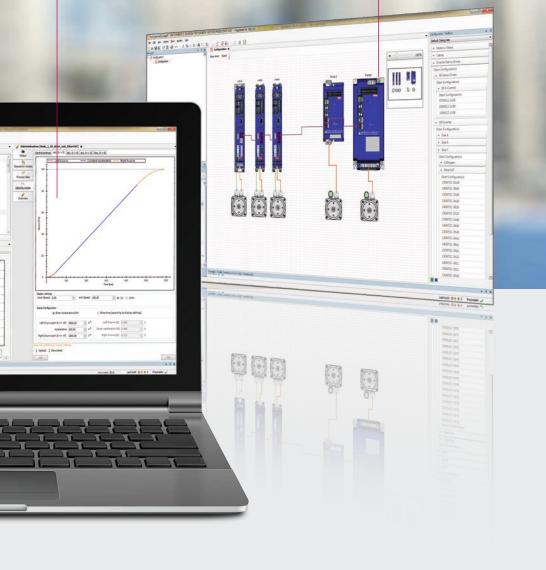
The intelligent automation suite from KEB combines an assistant-guided component selection, fieldbus configuration, drive parameterisation, IEC 61131-3 project generation and motion control. Throughout the planning and layout phase, implementation of control sequences and multi-axis movement profiles, to start-up and fine tuning, the user is supported by a tool developed by experienced application engineers.

With a foundation built on libraries, devices and template databases, rapid and simple solutions can be generated for a wide range of applications.

#### INTEGRATED DEVELOPMENT ENVIRONMENT



#### **COMMISSIONING ASSISTANT**


- Complete user guidance through the commissioning process
- KEB Motor database, free for extensions
- Anti cogging
- Fieldbus diagnostic and optimisation

#### SYSTEM CONFIGURATION AS A NEW COMPONENT OF COMBIVIS

- Access to complete KEB product database
- Intuitive gear component selection and system configuration using drag and drop
- Selection assistant with display of compatible components
- Display of all interfaces and connection components
- Material number generator

.

Extensive export function for quote list, Combivis Project, Excel ...





- IEC 61131-3 Applications development
- Device and library database
- Product configuration

- Start-up and diagnosis assistant
- COMBIVIS studio HMI integration
- Document database

## **KEB SERVICE**

#### **PERFORMANCE AND COMPETENCE**

#### **AFTER-SALES CUSTOMER SUPPORT**

- start-up support
- EMC service
- mains analysis
- Insulation, heat or vibration measurements
- conversion of old product series

#### **MAINTENANCE AND REPAIRS**

• rush or standard service

#### **COMPONENT AND SPACE PART SUPPLY**

• used and new parts for the exchange

#### **PREVENTIVE MAINTENANCE**

• forming and cleaning, inspection, functional analysis

#### **CUSTOMER SPECIFIC SERVICE**

- individual service support
- system optimisation







#### **KEB PARTNER**

#### **KEB WORLDWIDE**

AustriaKEB Antriebstechnik Austria GmbHRitzstraße 84614 MarchtrenkAustriaTel: +43 7243 53586-0Fax: +43 7243 53586-21E-Mail: info@keb.atInternet: www.keb.at

BelgiumKEB Automation KGHerenveld 29500 GeraardsbergenBelgiumTel: +32 544 37860Fax: +32 544 37898E-Mail: vb.belgien@keb.deInternet: www.keb.de

BrazilKEB South America – Regional ManagerRua Dr. Omar Pacheco Souza Riberio, 70BR-CEP 13569-430 Portal do Sol, São CarlosBrazilTel: +55 16 31161294E-Mail: roberto.arias@keb.de

FranceSociété Française KEB SASUZ.I. de la Croix St. Nicolas14, rue Gustave Eiffel94510 La Queue en BrieFranceTel: +33 149620101Fax: +33 145767495E-Mail: info@keb.frInternet: www.keb.fr

#### **Germany** Headquarters

KEB Automation KG Suedstraße 38 32683 Barntrup Germany Telefon +49 5263 401-0 Fax +49 5263 401-116 E-Mail: info@keb.de Internet: www.keb.de

#### Germany | Geared Motors

KEB Antriebstechnik GmbH Wildbacher Straße 5 08289 Schneeberg Germany Telefon +49 3772 67-0 Fax +49 3772 67-281 E-Mail: info@keb-drive.de Internet: www.keb-drive.de

ItalyKEB Italia S.r.I. UnipersonaleVia Newton, 220019 Settimo Milanese (Milano)Tel: +39 02 3353531Fax: +39 02 33500790E-Mail: info@keb.itInternet: www.keb.it

 Japan
 KEB Japan Ltd.

 15 - 16, 2 - Chome, Takanawa Minato-ku
 Tokyo 108 - 0074
 Japan

 Tel: +81 33 445-8515
 Fax: +81 33 445-8215
 E-Mail: info@keb.jp

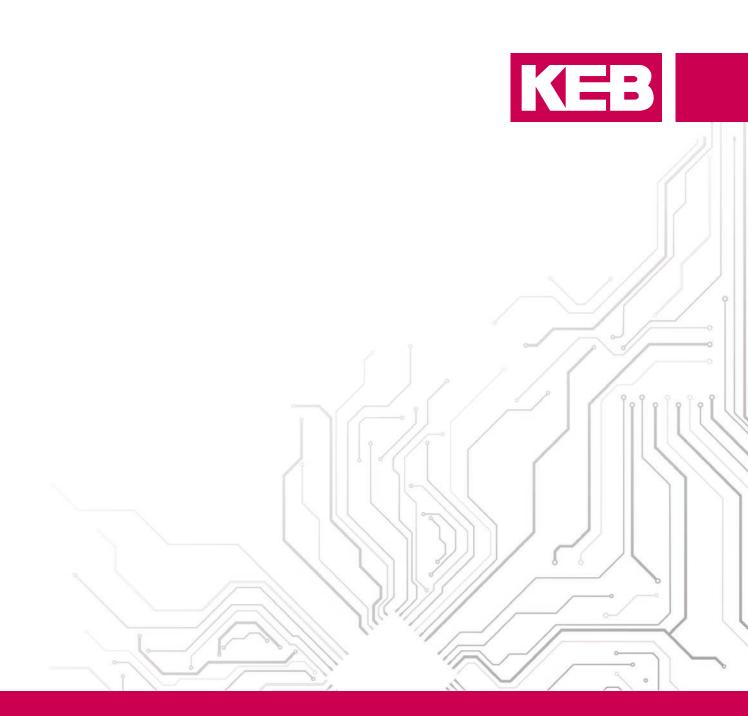
P. R. ChinaKEB Power Transmission Technology (Shanghai) Co. Ltd.No. 435 QianPu RoadChedun TownSongjiang District201611 ShanghaiP. R. ChinaTel: +86 21 37746688Fax: +86 21 37746600E-Mail: info@keb.cnInternet: www.keb.cn

Republic of KoreaKEB Automation KGRoom 1709, 415 Missy 2000725 Su Seo DongGangnam Gu 135- 757 SeoulRepublic of KoreaTel: +82 2 6253 6771Fax: +82 2 6253 6770E-Mail: vb.korea@keb.deInternet: www.keb.de

Russian FederationKEB RUS Ltd.Lesnaya str, house 30Dzerzhinsky MO140091 Moscow regionRussian FederationTel: +7 495 6320217Fax: +7 495 6320217E-Mail: info@keb.ruInternet: www.keb.ru

SpainKEB Automation KGc / Mitjer, Nave 8 - Pol. Ind. LA MASIA08798 Sant Cugat Sesgarrigues (Barcelona)SpainTel: +34 93 8970268Fax: +34 93 8992035E-Mail: vb.espana@keb.deInternet: www.keb.de

SwitzerlandKEB Automation AGWitzbergstraße 248330 Pfaeffikon/ZHSwitzerlandTel: +41 43 2886060Fax: +41 43 2886088E-Mail: info@keb.chInternet: www.keb.ch


United Kingdom | KEB (UK) Ltd. 5 Morris Close Park Farm Industrial Estate Wellingborough, Northants, NN8 6 XF United Kingdom Tel: +44 1933 402220 Fax: +44 1933 400724 E-Mail: info@keb.co.uk Internet: www.keb.co.uk

United StatesKEB America, Inc.5100 Valley Industrial Blvd. SouthShakopee, MN 55379United StatesTel: +1 952 2241400Fax: +1 952 2241499E-Mail: info@kebamerica.comInternet: www.kebamerica.com



#### **KEB PARTNERS WORLDWIDE**

... www.keb.de/contact/contact-worldwide



## Automation with Drive

KEB Automation KG Suedstrasse 38 32683 Barntrup Germany Tel. +49 5263 401-0 E-Mail: info@keb.de

www.keb.de